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Director de Tesis :
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Abstract

Given a commutative ring of characteristic p > 0, we can use the Frobenius morphism to study its
algebraic and geometric properties. Furthermore, this map induces an action on the local cohomology
modules. In this work, we study rings and modules in which this action is injective, which are called F -
injective. There exists relations between F -injectivity and other F -singularities. We discuss the proof that
F -injectivity is equivalent to the property that every parameter idea being Frobenius closed for Cohen-
Macaulay rings. If the ring is Gorenstein and F -finite, then F -injectivity and F -purity are equivalent.
We also discuss conditions in which the deformation of F -injectivity holds. In addition, we present
a proof that the set of associated primes of local cohomology modules is finite for rings with F -finite
representation type.
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Chapter 1

Introduction

Given a commutative ring R of characteris p > 0 we can study its properties via the Frobenius morphism,
which sends each element to its p power. This morphism is used to detect, to classify and to measure
singularities in affine varieties. Furthermore, the Frobenius map induces an action on any R-module M
sending rm to rpm, for every r ∈ R,m ∈ M . During this work we focus on the study of Frobenius
properties on local cohomology groups. We say (R,m) is F -injective if the Frobenius action in Hi

m (R) is
injective for every i (see Section 2.2). We aim to prove relations of other F -singularities with F -injectivity.
We consider reduced Noetherian rings throughout this work due to the behaviour in the singularities, for
example the equivalence of F -purity and F -splitness.

Theorem A (Corollary 6.1.6, [HR76]). Let R be a Noetherian ring of characteristic p. Let R be F -finite.
Then R is F -split if and only if R is F -pure.

In a Cohen-Macaulay ring we present a characterization of F -injectivity using Frobenius closure of
ideals.

Theorem B (Corollary 5.2.3, [QS17]). Let (R,m,K) be a local Cohen-Macaulay ring. The following
are equivalent

1. Every parameter ideal is Frobenius closed,

2. There is a parameter ideal of R that is Frobenius closed.

3. R is F -injective.

In addition, when we consider a Gorenstein ring we have the equivalence between F -pure and F -
injectivity.

Theorem C (Theorem 6.1.11, [Fed83]). Let (R,m) be a local reduced ring of characteristic p > 0 of
dimension d, and F -finite. If R is F -pure, then R is F -injective. Conversely, if R is Gorenstein, F -finite
and F -injective, R is F -pure.

Taking a detour from F -injectivity, we study the behaviour of the associated primes of the cohomo-
logical groups under certain conditions.

Theorem D (Theorem 4.2.3, [DQ20]). Let R have finite F -representation type. Then Ht
I (R) has only

finitely many associated primes for any ideal I and any t ≥ 0.
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Finally, deformation of F -injective ring is still an open question, however in the work of Linquan Ma
and Pham Quy, we found certain conditions in which this condition holds. To study this we first focus
on the deformation of F -anti-nilpotent rings and F -full rings. We have the following results regarding
this topic.

Theorem E (Theorem 7.2.2, [MQ18]). Let x ∈ R be a regular element. Then we have

1. If R/(x) is F -anti-nilpotent, then so is R.

2. If R/(x) is F -full, then so is R.

Theorem F (Corollary 7.3.9, [MQ18]). Let x ∈ R be a regular element. If R/(x) is strongly F -injective,
then so is R.

In order to describe better these interactions we separate the content of this thesis in 6 chapters, each
devoted to different aspects.

Chapter 2 is intended to be a compilation of results we use in the following chapters. We begin with
several definitions of local cohomology groups. These definitions use different techniques like derived
functors and Koszul cohomology. Later we discuss about local duality. We review the definition of Matlis
duality, Cohen-Macaulay rings, Gorenstein rings and canonical modules. References of those results are
classical notes in local cohomology and Cohen-Mcaulay rings [BH93, Hoc11, Jef18].

Our goal in Chapter 3 is talk about F -singularities mentioned before. We define the Frobenius
morphism and the ring R1/pe . We enlist F -singularities we use in the next chapters and demonstrate
relations among them. We devote a section to talk about F -injectivity and some results in Cohen-
Macaulay rings. This chapter is based on many sources [Smi19, DQ20, QS17, MQ18, HNB17, DS16a,
DSGNnB21].

In Chapter 4 we study associated primes of Ht
I (R). In order to do this, we review the definition of

filter regular sequences and the Nagel-Schenzel isomorphism (see [NS94]). Using the definition of finite
F -representation type, we prove that the local cohomology groups have finitely many associated primes.
This result is from the work of Hailong Dao and Pham Quy [DQ20] and simultaneously it was proven by
Melvin Hochster and Luis Nuñéz-Betancourt [HNB17] with a different method.

Chapter 5 is devoted to prove the equivalence mentioned in Theorem B. To do this, we define Frobenius
closure of ideals and we give some results regarding this F -singularity. In addition, we talk about
Frobenius closure in parameter ideals which is a key to our goal. This Chapter is based on the work of
Pham Quy and Kazuma Shimomoto [QS17].

Our goal in Chapter 6 is to give an example of a F -injective ring that is not F -pure (see Example
6.3.2). Whenever we have an F -finite ring, we have F -splitness is equivalent to F -purity (see Theorem A).
We also prove that under certain conditions F -injective is equivalent to F -purity (see Theorem C). We
prove that F -pure rings are Frobenius closed too, which proves there is no equivalence between F -purity
and F -injectivity. We talk about F -anti-nilpotent rings in exact sequences. This material is from many
sources [QS17, HR76, Fed83, DS16b].

In Chapter 7, we study deformation of F -injectivity. This is, if R/ (x) is F -injective, then R is F -
injective (see Corollary 7.3.9). In order to do this, we define surjective elements which is introduced in
[HMS14]. Then we prove a theorem regarding the deformation of F -full and F -anti-nilpotent rings (see
Theorem E). Finally we define strongly F -injective rings and talk about its deformation (see Theorem
F). This chapter is based on Linquan Ma and Pham Quy [MQ18].
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Chapter 2

Background

The goal of this chapter is recalling definitions and propositions regarding local cohomology and local
duality. In Section 2.1 we first define injective hulls, Matlis duality, Cohen-Macaulay modules, Gorenstein
rings and canonical modules. In Section 2.2 we give four equivalent definitions of local cohomology groups
along with some useful results. This chapter was based on different sources [BH93, Hoc11, Jef18]

2.1 Local Duality

The goal in this section is giving the definitions of injective resolutions, injective hull, local duality and
Matlis duality. Some definitions we use are Cohen-Macaulay modules and on Gorenstein rings.

We begin with the definition of an injective module.

Definition 2.1.1. An R-module E is injective is for any i : A ↪→ B and φ : A→ E maps of R-modules,
there exists φ′ : B → E such that the following diagram commutes

A B

E

i

φ
φ′

Remark 2.1.2. The Definition 2.1.1 is equivalent to ask that any map A ↪→ B induces a surjection

HomR (B,E) ↠ HomR (A,E) .

Hence if E is injective, the the functor HomR (,E) is exact.

Remark 2.1.3. Every R-module can be embedded in an injective module.

Due to Remark 2.1.3 we can construct a complex of injective modules.

Definition 2.1.4. A injective resolution of an R-module M is an exact complex of injective modules

E0 E1 E2 · · ·

such that Ker (E0 → E1) ∼=M .
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We construct the derived functor Ext•R (–, –) using injective resolutions

Definition 2.1.5. Let M and N be R-modules. We consider an injective resolution E• for N . Then we
define for every i ∈ N

ExtiR (M,N) =
Ker

(
HomR

(
M,Ei

)
→ HomR

(
M,Ei+1

))
Im (HomR (M,Ei−1) → HomR (M,Ei))

.

Remark 2.1.6.

1. The value of Ext•R (·, ·) is independent of the resolutions chosen up to isomorphism.

2. Let J ⊆ I ⊆ R be ideals. Then the map R/J → R/I induces a map in every i ∈ N

ExtiR (R/I,M) → ExtiR (R/J,M) .

Furthermore, if
· · · ⊆ I3 ⊆ I2 ⊆ I1

is a decreasing sequence of ideals, for every i ∈ N we get a direct limit system

· · · → ExtiR (R/It,M) → ExtiR (R/It+1,M) → · · · .

In order to define injective hulls, we need one more definition.

Definition 2.1.7. Given two R-modules M ⊆ N , we say that N is an essential extension of M is for
any submodule L of N , L∩M ̸= 0. If M ⊆ N is essential and N has no proper essential extensions, then
we say that N is a maximal essential extension.

Now, we relate injective modules and essential extensions in the next proposition

Proposition 2.1.8. Let M ⊆ E be an R-module. Then E is injective if and only if E has no proper
essential extensions. In particular, any maximal essential extension is an injective module. Furthermore,
if E is injective, then all maximal essential extension of M are isomorphic to E.

Now using Proposition 2.1.8 we define injective hulls.

Definition 2.1.9. Let M be an R-module. We say that an injective hull of M , denoted ER (M) is a
maximal essential extension of M .

Now we give the definition of Matlis duality.

Definition 2.1.10. Let (R,m) be a local ring, with K = R/m. The Matlis duality functor of R is defined
as

(−)
∨
= HomR (–,ER (K)) .

Now, in order to define Cohen-Macaulay modules, we give the definition of depth of a module

Definition 2.1.11. Let (R,m) be a local ring and M be an R-module. The depth of M , denoted as
depth (M), is the maximal length of a regular sequence on M .

We know in general depth (M) ≤ dim (M). The following modules are characterized by holding the
equality.
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Definition 2.1.12. Let (R,m) be a Noetherian local ring and let M be a finitely generated R-module.
We say M is Cohen-Macaulay if depth (M) = dim (M).

Other type of rings we are interested in are Gorenstein rings.

Definition 2.1.13. Let (R,m) be a Noetherian local ring. We say R is Gorenstein if for every system
of parameters x1, . . . , xd we have that

1. x1, . . . , xd is a regular sequence

2. (x1, . . . , xd) is an irreducible ideal.

Remark 2.1.14. Note that by condition 1 in the definition of Gorenstein rings, if R is Gorenstein, then
R is Cohen-Macaulay.

For any module M we can get an injective resolution, therefore we have the following definition.

Definition 2.1.15. Let R be a Noetherian ring, and let M be a finitely generated R-module. The
injective dimension of M , denoted by injdimR (M), is defined as the length of its minimal injective
resolution.

2.2 Local Cohomology

During this section R denotes a Noetherian commutative ring. We first define local cohomology groups.
The first technique consists in studying derived functors. We begin with the following definition

Definition 2.2.1. Let I ⊆ R an ideal and M an R-module. We define

ΓI (M) = {v ∈M | Inv = 0, for some n ∈ N}

Proposition 2.2.2. Let I ⊆ R an ideal and M an R-module. Then ΓI is a left exact functor in the
category of R-modules.

Proof. First we prove it is a functor. Let φ : M → N be a R-module homomorphism and v ∈ ΓI (M).
Then there exists n ∈ N such that Inv = 0, and so

Inφ (v) = φ (Inv) = 0.

This is, φ (v) ∈ ΓI (N). Consider

ΓI (φ) : ΓI (M) → ΓI (N)

v 7→ φ (v) .

We have that ΓI (IdM ) = IdΓI
. If φ : M → N , ϕ : N → L are R-module morphisms and v ∈ ΓI (M),

then

ΓI (ϕ) ◦ ΓI (φ) (v) = ΓI (ϕ) (φ (v))

= ϕ ◦ φ (v)

= ΓI (ϕ ◦ φ) (v) .

Now we prove that ΓI is left exact. Let
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0 M N L 0
φ ϕ

be a short exact sequence. If v ∈ KerΓI (φ), then φ (v) = 0, and so v = 0 since φ is injective. Therefore
ΓI (φ) is injective. Since ϕ ◦ φ = 0, we have that

ΓI (ϕ) ◦ ΓI (φ) = ϕ ◦ φ = 0,

this is ImΓI (φ) ⊆ KerΓI (ϕ). Finally, let v ∈ KerΓI (ϕ). Then ϕ (v) = 0, and so v ∈ Kerϕ = Imφ. This
is, there exists w ∈M such that φ (w) = v. Additionally since v ∈ ΓI (M), Inv = 0 for some n ∈ N. We
have

0 = Inv = Inφ (w) .

We conclude ImΓI (φ) = Ker ΓI (ϕ) ■

Using this functor we give the first definition of local cohomology groups.

Definition 2.2.3. Let I ⊆ R be an ideal and M an R-module. We define the i-th local cohomology
group of M with respect to I by

Hi
I (–) = RiΓI (–) .

Specifically, if M → E0 → E1 → . . . is an injective resolution of M , then

Hi
I (M) =

Ker
(
ΓI

(
Ei

)
→ ΓI

(
Ei+1

))
Im (ΓI (Ei−1) → ΓI (Ei))

.

The 0-th local cohomology group of a module M is a submodule of M .

Proposition 2.2.4. Let I ⊆ R be an ideal and M an R-module. Then H0
I (M) ∼= ΓI (M)

Proof. Let
0 →M → E0 → E1 → . . .

an injective resolution for M . By Proposition 2.2.2, this induces an exact sequence

0 → ΓI (M) → ΓI
(
E0

)
→ ΓI

(
E1

)
→ . . .

Since E−1 = 0

Hi
I (M) =

Ker
(
ΓI

(
Ei

)
→ ΓI

(
Ei+1

))
Im (ΓI (Ei−1) → ΓI (Ei))

= Ker
(
ΓI

(
Ei

)
→ ΓI

(
Ei+1

))
= ΓI (M) .

■

Another way to obtain local cohomology groups is using the two-variable functor Ext•R (·, ·).

Definition 2.2.5. Let M be an R-module and let

· · · ⊆ I3 ⊆ I2 ⊆ I1

be a decreasing sequence of ideals, denoted {It}t. We define the i-th local cohomology module of M with
support in I by

Hi
I (M) = lim

t
ExtiR (R/It,M) .
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Remark 2.2.6. The sequence of ideals {It}t can be replaced by either a subsequence of another de-
creasing sequence of ideals {Jt}t such that Jt and It are cofinal. In particular, for I = (x1, . . . , xn), the
sequences {It}t and {Jt}t where It = It and Jt = (xt1, . . . , x

t
n) are cofinal.

The following theorem gives another option in the election of replacement for the sequence of ideals.

Theorem 2.2.7. If I, J ⊆ R are ideals with the same radical, then Hi
I (M) ∼= Hi

J (M).

Remark 2.2.8. Let (R,m) be a local ring and let M be a finitely generated R-mod. Then Hi
m (M) is

Artinian.

Remark 2.2.9. Let (R,m) be a local ring and let M be an R-mod. Using

depthIM = min
{
i | ExtiR (R/I,M) ̸= 0

}
,

one can show that the first nonvanishing Hi
m (M) occurs for i = depthmM .

We also obtain cohomology groups using the Čech complex.

Definition 2.2.10. Let x1, . . . , xd be a system of parameters of a ring R. We define the modified Čech
complex as follows

Č• : 0 → Č0 → Č1 → · · · → Čd → 0

where
Čt = ⊕1≤i1≤···≤it≤dRxi1

xi2
...xit

and the maps dt : Čt → Čt+1 are given component-wise as the localization mapRxi1xi2 ...xit
→ Rxj1xj2 ...xjt+1

up to a sign.

Theorem 2.2.11. Let M be an R-mod. Then for every i ≥ 0

Hi
I (M) ∼= Hi

(
M ⊗R Č•)

Remark 2.2.12. The Frobenius morphism acts on each Čt from Definition 2.2.10 for every t and, since
Frobenius commutes with localization, it also commutes with the differentiation maps. Therefore, F
induces a morphism for every t

F : Ht
m (–) → Ht

m (–) .

Furthermore, we have

Hd
m (R) =

Rx1···xd∑d
i=1Rx1···x̂i···xd

,

where x̂i means we drop the element xi. Thus, if c ∈ Hd
m (R), then c =

[
a

xt
1···xt

d

]
for some a

xt
1···xt

d
∈ Čd.

Now we give a third form to compute the i-th local cohomology group using the Koszul complex.

Definition 2.2.13. Let R be a ring. Given a sequence of n elements x = x1, . . . , xn we define the
cohomological Koszul complex inductively as follows

•
K• (x1, R) : 0 K1 K0 0

·x1
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• K• (x,R) : K• (x1, R)⊗ · · · ⊗K• (xn, R).

If M is an R-module, we define
K• (x,M) = K• (x,R)⊗M.

Remark 2.2.14. From the definition of the cohomological Koszul complex, we can form the complex

H• (x∞,M) := lim
t
K• (xt,M)

.

This definition is also equivalent to the previous one.

Theorem 2.2.15. Let I = (x1, . . . , xn) ⊂ R be an ideal and M be an R-module. Then

H•
I (M) ∼= H• (x∞,M) .

Remark 2.2.16. For I = (x1, . . . , xn) and ideal in R, we have that

Hn
I (R) ∼= lim

t

R

(xt1, . . . , x
t
n)
.

The following theorem states equivalent conditions for Gorenstein rings using local cohomology groups.

Theorem 2.2.17. Let (R,m) be a local ring of dimension d. The following are equivalent.

1. R is Gorenstein.

2. R is Cohen-Macaulay and some system of parameters generates an irreducible ideal.

3.

ExtiR (K,E) ∼=

{
0 i < d

K i = d.

4. R is Cohen-Macaulay and Hd
m (R) ∼= ER (K).

5. injdimR (R) <∞.

6. injdimR (R) = d.

Local cohomology groups are used to define generalized Cohen-Macaulay rings.

Definition 2.2.18. Let (R,m) be a local ring of dimension d. We say R is generalized Cohen-Macaulay
ring if for every i = 0, . . . , i− 1 the length of Hi

m (R) is finite.

There is a module on Cohen-Macaulay rings strongly related with local cohomology.

Definition 2.2.19. A canonical module over a Cohen-Macaulay ring (R,m) is a finitely generated module
denoted by ωR such that

HomR (ωR,ER (K)) ∼= H
dim(R)
m (R) .

Remark 2.2.20. Let (R,m) be a Cohen-Macaulay local ring of dimension d. By Theorem 2.2.17, R is
Gorenstein if and only if

H
dim(R)
m (R) ∼= ER (K) ∼= HomR (R,ER (K)) .

Hence, R is a canonical module if and only if R is Gorenstein.
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Finally, we have apply Matlis duality in Cohen Macaulay rings.

Theorem 2.2.21. If (S,m) → (S∗, n) is a local homomorphism of Cohen-Macaulay local rings such that
S∗ is module-finite over S, and h = dimS − dimS∗, then

ωS∗ ∼= ExthS

(
S*,S

)
.

In particular, if S is Gorenstein and S∗ is local, Cohen-Macaulay, and module-finite over S, then

ωS∗ ∼= HomS (S
∗, S) .

Finally, we conclude with the local duality theorem.

Theorem 2.2.22. Let (R,m) be a regular local ring of dimension d, and M be an R-module. Then

1. if M is finitely generated as R-module, then Hi
m (M) = Extd-iR (M,R)

∨
;

2. if R is complete, then Hi
m (M)

∨
= Extd-iR (M,R).

13



Chapter 3

Methods in prime characteristic

Through this chapter we consider R a Noetherian ring of prime characteristic p > 0. Our goal in Section
3.1 is to introduce the Frobenius morphism. In Section 3.2 we give the several definitions, and relations
we use in following chapters. The main topic in Section 3.3 is F -injectivity which is the central topic
in this thesis. This chapter is based on recent papers [DS16a], [QS17], [DQ20], [MQ18], [DSGNnB21],
[HNB17].

3.1 Frobenius morphism

We begin this section with the definition of the Frobenius morphism. Later we present some properties
of this map.

Definition 3.1.1. We define the Frobenius morphism F by

F : R→ R

r 7→ rp

The iterated Frobenius morphism is the map F composed e times with itself. It is denoted by F e.

Along with the Frobenius morphisms we obtain new ideals in R.

Definition 3.1.2. Let I ⊆ R an ideal. We denote I [p
e] the ideal generated by the pe-powers of the

elements of I.

Being reduced is equivalent to having an injective Frobenius map. For this reason, during this
manuscript we often work with reduced rings.

Proposition 3.1.3. Let R be a ring. The Frobenius morphism is injective if and only if R is reduced.

Proof. Let R be reduced. Then F has to be injective, because xp = 0 if and only if x = 0.
Now, suppose that the Frobenius map is injective. We proceed by contradiction. Let x ∈ R − {0}

be a nilpotent element. Then there exists α ∈ N such that xα = 0. In addition, we can find an element
e ∈ N such that α < pe.

Since F is injective, we get that F e is also injective. Thus, F e(x) = xp
e

= 0, which is a contradiction.
■
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When R is reduced, we define an R-module used during this work.

Definition 3.1.4. Let R be a reduced ring. Let P1, . . . , Pl be the minimal prime ideals of R. We define
the ring R1/pe by

R1/pe =

{
x ∈

l⊕
i=1

Frac (R/Pi) | xp
e

∈ R

}
Remark 3.1.5. Suppose that R is reduced and M is an R-module. We have that

R

I
⊗M1/p ∼=

M1/p

IM1/p
∼=

(
M

I [p]M

)1/p

Remark 3.1.6. Note that we have the following ring chain

R ⊆ R1/p ⊆ R1/p2 ⊆ R1/p3 ⊆ · · ·

Definition 3.1.7. We define the perfect closure of a reduced ring R by

R∞ = ∪e∈NR
1/pe

The idea of the Frobenius map can be extended to modules.

Definition 3.1.8. Let (R,m) be a local ring. A Frobenius action on an R-moduleM , is an additive map
F :M →M that for all u ∈M and r ∈ R,

F (ru) = rpF (u)

Furthermore, the Frobenius map induces a functor in the category of R-modules.

Remark 3.1.9. There exists a equivalence of categories between R-modules and R1/p-modules. Let G
be the functor given by this equivalence going from R-modules to R1/p-modules. Consider the the map

γ : mod (R) → mod (R)

M 7→M ⊗R R1/p.

The composition F = G−1 ◦ γ is called Peskine-Szpiro’s functor.

Using the Frobenius morphism we construct another isomorphic ring

Remark 3.1.10. Consider the set

End (R) = {φ : R→ R | φ is a ring homomorphism} .

Note that for any r ∈ R, the map ·r is in End (R). In addition, the Frobenius map is also in End (R).

Definition 3.1.11. We define the ring non-commutative R-algebra generated by the map Frobenius F
with relations rpF = Fr, for every r ∈ R, this is

R {F} =
R ⟨F ⟩

R (rpF − Fr | r ∈ R)
.

Remark 3.1.12. Note that M is a left R {F}-module if and only if M has a Frobenius action. Hence
the finite direct sum of finite generated left R {F}-modules is also a R {F}-module.
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3.2 F-singularities

In this section we review some F -singularities we use in the next chapters. In addition, we give some
results about their relations and properties. During this section R represents a Noetherian reduced ring
of characteristic p > 0.

We begin with some of definitions. The first one is also called F -compatible.

Definition 3.2.1. We say that an R-module M is F -stable if F (M) ⊆M

Definition 3.2.2. We say that the Frobenius action on an R-module M is nilpotent if F e (M) = 0 for
some e > 0.

Definition 3.2.3. Let M be an R-module with a Frobenius action F . We say the Frobenius action on
M is full if the map

Fe (M) →M

is surjective for some e ≥ 1 (equivalently for every e ≥ 1) where F denote the Peskine-Szpiro’s functor.

Remark 3.2.4. The Definition 3.2.3 is equivalent to

RF eR (M) =M

for every e ≥ 1.

Definition 3.2.5. We say that the Frobenius action on an R-module M is anti-nilpotent if for any
F -stable submodule N ⊆M , the induced Frobenius action F on M/N is injectively.

Remark 3.2.6. If M is an anti-nilpotent R-module, then the Frobenius action is injective on M .

There is a strong relation between F -stable and anti-nilpotent modules.

Lemma 3.2.7. Let M be an R-module. The Frobenius action on M is an anti-nilpotent if and only if
every F -stable submodule N ⊆M is full. In particular, if M is anti-nilpotent, then M is full.

Proof. First, suppose M is anti-nilpotent. Let N ⊆M be a F -stable submodule. Then F (N) ⊆ N . Let
N ′ = F (N)R. By definition, N ′ ⊆ N is an F -stable submodule of M .

If N ′ ⊊ N , there exists u ∈ N \N ′. Then F (u) ∈ N ′. Hence F (u) = 0 inM/N ′. SinceM is nilpotent,
F is injective in M/N ′. Therefore u ∈ N ′, which is a contradiction. We conclude N = N ′

Now, suppose every F -stable submodule of M is full, and let N ⊆ M be F -stable submodule such
that F is not injective on M/N . There exists y /∈ N such that F (y) ∈ N . Let N ′′ = N +R (y). We have
that

F (N ′′) = F (N) + F (R (y)) ⊆ N ⊊ N ′′.

This is, N ′′ ⊆M is F -stable, and so full. However, F (N ′′) ⊆ N ⊊ N ′′, which is a contradiction. ■

Remark 3.2.8. Let M be an R-module endowed with a Frobenius action F . Then for every r ∈ R, the
map rF denotes another Frobenius action. Moreover, is rF is full or anti-nilpotent, then so is F .

However, a full ring is not necessarily anti-nilpotent.
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Example 3.2.9. Let I = (x1, . . . , xt) be an ideal in R. We have that

Ht
I (R) =

Rx1···xt

Im (⊕ti=1Rx1···x̂i···xt
→ Rx1···xt

)
.

Furthermore the Frobenius action on Ht
I is given by 1

x1···xt
7→ 1

xp1 · · ·x
p
t

. Note that

R1/pe ⊗Ht
I (R) =

[
Ht
I (R)

]1/pe
.

Hence, for [l] ∈ Ht
I (R) there exists [l]

1/pe ∈ [Ht
I (R)]

1/pe
such that F e

(
[l]

1/pe
)
= ([l]). Therefore, the

Frobenius action on Ht
I (R) is full.

However, for R = K[[x, y]] and I = (x), we have that

H1
(x) (R)

∼= K[[y]]x ⊕ · · · ⊕K[[y]]xn ⊕ · · · .

Let N be the submodule generated by
{
y2x−n

}∞
n=1

. Note that

F
(
y2x−n

)
= y2px−np ∈ N,

hence N is F -stable. On the other hand, F
(
yx−1

)
= ypx−p ∈ N but yx−1 /∈ N and so the Frobenius

action on H1
(x)R/N is not injective.

We now continue with some definitions.

Definition 3.2.10. We say that R has finite F -representation type by finitely generated R-modules
M1, . . . ,Ms if for every e ≥ 0, there exist ne,1, . . . , ne,s ∈ Z such that

R1/pe ∼= ⊕si=1M
ne,i

i .

Definition 3.2.11. We say that R is F -finite if it is a finitely generated R-module via F .

Remark 3.2.12. Finite F -representation type implies F -finite.

Definition 3.2.13. The ring R is called F -pure if the Frobenius endomorphism is a pure map. This is
for any R-module M

R⊗M R⊗M

is injective.

Example 3.2.14. Examples of F -pure rings are regular local rings, Stanley–Reisner rings, finitely gen-
erated normal semigroup rings and determinantal rings.

Definition 3.2.15. Let R be a domain. We say that R is Frobenius split, or F -split if there is a map

φ : R1/p → R

such that φ ◦ F = IdR.

Remark 3.2.16. Saying that R is F -split is equivalent to the following:

17



• there exists π ∈ Hom
(
R1/p, R

)
such that π

(
11/p

)
= 1, and

• R1/p ∼= R⊕M , with M an R-module.

We mention the equivalence of F -purity and F -splitness. However, it follows from results in Chapter
6.

Theorem 3.2.17. If R is F -finite, then being F -pure is equivalent to being F -split.

Definition 3.2.18. We say that a local ring (R,m) is F -full if the Frobenius action on Hi
m (R) is full for

every i ≥ 0.

Remark 3.2.19. Definition 3.2.18 is equivalent to say that R is F -full if the map

R1/p ⊗Hi
m (R) → Hi

m

(
R1/p

)
is surjective for every i.

Now, F -fullness localizes.

Proposition 3.2.20. Let (R,m) be an F -finite and F -full local ring. Then RP is also F -full for every
P ∈ SpecR.

Proof. By a result from Gabber [[Gab04], Remark 13.6]. R = A/I for some regular ring A and I ⊆ A
ideal. Let n be the dimension of A. Since R is F -full we have the surjective map

R1/p ⊗Hi
m (R) Hi

m

(
R1/p

)
.

Using the Matlis duality functor and the tensor-hom adjunction we have

Hi
m

(
R1/p

)∨
Hom

(
R1/p ⊗Hi

m (R) , ER (K)
)

Hom
(
R1/p,Hom

(
Hi

m (R) , ER (K)
))
.∼=

By Theorem 2.2.22, we have that

Extn-iR

(
A,R1/p

)
Hom

(
R1/p,Extn-iR

(
A,R1/p

))
.

Hence, for every Q ∈ SpecR, we have the injective map

Extn-iR

(
AQ,R

1/p
Q

)
Hom

(
R

1/p
Q ,Extn-iR

(
AQ,R

1/p
Q

))
.

Using Theorem 2.2.22 and tensor-hom adjunction

Hi
m

(
R

1/p
Q

)∨
Hom

(
R

1/p
Q ⊗Hi

m (RQ) , ERQ
(KQ)

)
.

We conclude the map

R
1/p
Q ⊗Hi

m (RQ) Hi
m

(
R

1/p
Q

)
is surjective. ■
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Definition 3.2.21. We say that an R-module M is F -anti-nilpotent if the Frobenius action on Hi
m (M)

is anti-nilpotent for every i ≥ 0.

In particular if M = R we have the following definition.

Definition 3.2.22. We say that a local ring (R,m) is stably FH-finite if Hi
m (R) is F -anti-nilpotent.

Remark 3.2.23. By Lemma 3.2.7, F -anti-nilpotent implies F -full.

Proposition 3.2.24. Let (R,m) be a F -finite and F -pure local ring. Then Hi
m (R) is stably FH-finite.

Proof. Let W ⊆ Hi
m (R) be a F -stable submodule. We want to show that

F e :
Hi

m (R)

W
→ Hi

m (R)

W

is injective. Let y ∈ Hi
m (R) such that F e (y) ∈W . It suffices to show that

y ∈
(
F (y) , F 2 (y) , . . .

)
since W is F -stable. By Remark 2.2.8, there exists e′ ≥ 0 such that

F e
′
(y) ∈

(
F e

′+1 (y) , F e
′+2 (y) , . . .

)
R.

Thus for some n ∈ N and r1, . . . , rn ∈ R such that

F e
′
(y) =

n∑
i=1

riF
e′+i (y) .

On the other hand, since R is F -finite and F -pure, R is F -split. Hence there exists a splitting map
φ : R1/pe → R. Identifying R1/pe with R, we get that φ ◦ F = IdR. Since localization and direct limits
are exact functors, the map F : Hi

m (R) → Hi
m (R) also splits via the map φ̄ induced via φ. Furthermore,

for every r ∈ R and η ∈ Hi
m (R) we have that

φ̄ (rη) = φ (r) φ̄ (η) .

Thus

y = IdR (y)

= φ̄e
′
(F e (y))

=

n∑
i=1

φ̄e
′
(
riF

e′+i (y)
)

=

n∑
i=1

φe
′
(ri)F

i (y) ∈W.

We conclude that F e is injective in
Hi

m (R)

W
. ■

Remark 3.2.25. Cohen-Macaulay rings are F -full. Let R be a Cohen-Macaulay ring and x1, . . . , xd be
a system of parameters. Similarly to what we did in Example 3.2.9, we have that

R1/pe ⊗Hd
m (R) =

[
Hd

m

(
R1/pe

)]
.
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3.3 F-injectivity

In this section we give the definition of an F -injective ring, the definition of finiteness dimension and
some relations with depth.

Through this section we assume that R is a local Noetherian ring of characteristic p > 0 with maximal
ideal m.

Definition 3.3.1. A ring R is called F -injective if the Frobenius action on Hi
m (R) is injective for every

i.

Remark 3.3.2. Note that F -anti-nilpotent implies F -injective, taking the submodule {0} of Hi
m (R).

Whenever the ring is Cohen-Macaulay, we can test F -injectivity in a quotient ring instead of the ring.

Theorem 3.3.3. Let x a nonzero divisor on R. If R/xR is Cohen-Macaulay and F -injective, then R is
Cohen-Macaulay and F -injective.

Proof. Note that
depthR/xR = depthR− 1

and dimR/xR = dimR−1, therefore R is Cohen-Macaulay. Now, to prove that R is F -injective, consider
the following commutative diagram

0 R R R/xR 0

0 R R R/xR 0

x

xpe−1F e F e
F e

x

where the map x is the map sending each element to its multiplication by x. This diagram induces the
following commutative diagram

0 Hd−1
m (R/xR) Hd

m (R) Hd
m (R) 0

0 Hd−1
m (R/xR) Hd

m (R) Hd
m (R) 0

F e

x

xpe−1F e F e

x

Suppose the map xp
e−1F e is not injective. Then there exists r ∈ Soc

(
Hd−1

m (R/xR)
)
∩ Ker

(
xp

e−1F e
)

nonzero. Note that Ker (x) = Hd−1
m (R/xR), and so Soc

(
Hd−1

m (R/xR)
)
⊆ Hd−1

m (R/xR). Since the
diagram commutes

F e (r) = xp
e−1F e (r) = 0,

which is a contradiction for R/xR is F -injective. We conclude xp
e−1F e is injective and so F e is also

injective on Hd
m (R). ■

To relate F -injectivity with depth we give the following definition.

Definition 3.3.4. Let M be a finitely generated R-module. The finiteness dimension of M with respect
to m is defined as follows

fm (M) = inf
{
i | Hi

m (M) is not finitely generated
}
∈ Z≥0 ∪ {∞} .
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Remark 3.3.5.

1. Assume dimM = 0 or M = 0. Then Hi
m (M) is finitely generated for every i ≥ 0 and so fm = ∞.

Furthermore, let M be a finitely generated R-module such that d = dimM > 0. Then Hd
m (M) is

not finitely generated, and so fm (M) ≤ d.

2. Suppose R is an image of a Cohen-Macaulay ring. By Grothendieck Finiteness Theorem, we have
that

fm (M) = min {depthMp + dimR/p | p ∈ Supp (M) \ {m}} .

3. M is generalized Cohen-Macaulay if and only if dimM = fm (M).

4. depthR ≤ fm (R) ≤ dimR

Theorem 3.3.6 ([MQ18]). Let x ∈ R be a regular element. If R/(x) is F -injective, then depthR =
fm (R)

Proof. Let t = depthR. We proceed by contradiction. Suppose t < fm (R). We have the following
diagram

0 R R R/(x) 0

0 R R R/(x) 0

·x

·x

FFxp−1F

which induces

0 Ht−1
m (R/(x)) Ht

m (R) Ht
m (R) · · ·

0 Ht−1
m (R/(x)) Ht

m (R) Ht
m (R) · · ·

α ·x

α ·x

F e
xpe−1F eF e

were both α and the left vertical map F are both injective. Since t < fm (R), Ht
m (R) has finite length,

and so mpe−1Ht
m (R) = 0 for some, e≫ 0. This is, the map xp

e−1F e vanishes for some e≫ 0. Since x is
a regular element, F e vanishes on Ht

m (R) for some e≫ 0, which is a contradiction. ■
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Chapter 4

Filter regular sequence and
associated primes

Through this chapter we define filter regular sequences and we relate them to associated primes in the
local cohomology groups. In Section 4.1 we define filter regular sequence, and in Section 4.2 we give some
results regarding associated primes. This chapter is based on the work of Hailong Dao and Pham Quy
[DQ20]. The result about finite associated primes in the local cohomology was also proved by Melvin
Hochster and Luis Núñez-Betancourt [HNB17].

4.1 Filter regular sequence

Our goal in this section is to define filter regular sequences and mention some results about them.
In this section R is a Noetherian commutative ring.

Definition 4.1.1. Let (R,m,K) be a local ring,M be a finitely generated R-module, and let x1, . . . , xt ∈
R. We say that x1, . . . , xl form a filter regular sequence on M if the following conditions hold

• (x1, . . . , xt) ⊆ m,

• for i ∈ {2, . . . t}, xi /∈ P for every P ∈ Ass (M/ (x1, . . . , xi−1)M) \ {m}.

Remark 4.1.2. Using the Prime Avoidance Lemma and that R is a Noetherian ring, we can inductively
get a I-filter regular sequence for any t ≥ 1. First consider the case t = 1. By the Prime Avoidance
theorem, there exists x1 ∈ I such that x1 /∈ P for every P ∈ AssRR \ {m}.

Now for the case t = 2, consider the element x1 we obtained for the previous case. We have that
R/ (x1) is also Noetherian. By the Prime Avoidance Theorem there exists x2 ∈ I such that x2 /∈ P for

every P ∈ AssR
R

(x1)
\{m}. Continuing with this process we can get t elements that satisfy the condition

on filter regular sequence.

Now we give some equivalence definition of filter regular sequences.
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Lemma 4.1.3. Let M be a finitely generated module over a local ring (R,m,K). Then x1, . . . , xt ∈ m
form a filter regular sequence if and only if one of the following conditions holds:

• The quotient
((x1, . . . , xi−t)M :M xi) / (x1, . . . , xi−t)M

is an R-module of finite length for every i = 1, . . . , t.

• Fix i ∈ N with 1 ≤ i ≤ t. Then the sequence

x1
1
, . . . ,

xi
1

forms an Rp-regular sequence in Mp for every p ∈ (Spec (R/ (x1 . . . , xi)) ∩ SuppRM) \ {m}

• The sequence xnt
1 , . . . , x

nt
t is a filter regular sequence for all n1, . . . , nt ≥ 1.

Finally, we mention the Nagel Schezel Isomorphism, which can be proven using Grothendick spectral
sequences.

Lemma 4.1.4 (Nagel-Schenzel Isomorphism). Let (R,m,K) be a local ring and let M be a finitely
generated R-module. Let x1, . . . , xt be a filter regular sequence on M . Then we have

Hi
m (M) ∼=

{
Hi

(x1,...,xk)
(M) if i < k

Hi−k
m

(
Hk

(x1,...,xk)
(M)

)
if i ≥ k

4.2 Associated primes

In this section we give some results about associated primes of local cohomology. We aim to show that in
finite F -representation type rings the local cohomology groups have a finite number of associated primes.

During this section, R will denote a reduced Noetherian commutative ring with positive characteristic
p > 0.

The associated primes of a module do not change when we take p roots.

Lemma 4.2.1. Suppose M is an R-module. Then AssRM = AssM1/pe .

Proof. First note that if Q = (q1, . . . , Q2) ∈ AssR (M) then by Proposition 2.2.4, H0
Q (MQ) = ΓQ (MQ).

Then there exists l ∈ M such that ql = 0 for every q ∈ Q, and so l ∈ H0
Q (MQ). Conversely, if

l ∈ H0
Q (MQ), then there exists n ∈ N such that Qnl = 0. Since l ∈ MQ is an equivalence class, we

can take l ∈ M . Therefore qn−1
1 l ∈ M and Qqn−1

1 l = 0. We have that Q ∈ AssR (M). Similarly

Q ∈ AssR
(
M1/pe

)
if and only if H0

Q

(
M

1/pe

Q

)
̸= 0.

Since Frobenius is injective, H0
Q (MQ) ̸= 0 if and only if

[
H0
Q (MQ)

]1/pe ̸= 0. Furthermore, this

happens if and only if H0
Q

(
M

1/pe

Q

)
̸= 0, because Frobenius commutes with localizations. We conclude

Q ∈ AssR (M) if and only if Q ∈ AssR
(
M1/pe

)
. ■

Lemma 4.2.2. Let I ⊆ R be an ideal. Then⋃
e≥0

Ass
R

Ipe
⊆ Ass

R

I
∪ SingR,

where SingR = {P ∈ SpecR | Rp is not regular }.
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Proof. Let P ∈ AssR/I [q] for some q = pe. If P ∈ AssR/I, then we are done. Otherwise, we show that
P ∈ SingR. We proceed by contradiction. Suppose RP is regular. By Kunz Theorem, the Frobenius
map is flat over Rp. Since the Frobenius map commutes with localization, we have that

depth
(
R/I [q]

)
P
= min

{
i | Hi

m

((
R/I [q]

)
P

)
̸= 0

}
= min

{
i | Hi

m

(
F
(
R/I [q]

)
P

)
̸= 0

}
= min

{
i | F

(
Hi

m (R/I)
)
̸= 0

}
= min

{
i | Hi

m (R/I) ̸= 0
}

= depth (R/I)P .

Thus, we have depth
(
R/I [q]

)
P
= depth (R/I)P > 0. But this is contradiction since P /∈ AssR/I, and so

(R/I)P = 0. ■

Now we prove the main theorem of this chapter.

Theorem 4.2.3 ([DQ20]). Let R have finite F -representation type. Then Ht
I (R) has only finitely many

associated primes for any ideal I and any t ≥ 0.

Proof. For t = 0, we have that
Ht
I (R) = ΓI (R) ⊆ R.

Since R is Noetherian, Ht
I (R) has finitely many primes.

Now, consider the case t ≥ 1. By Remark 4.1.2, we can take x1, . . . , xt a filter regular sequence and
let J = (x1, . . . , xt). By Nagel-Schenzel Isomorphism, we have that

Ht
I (R)

∼= H0
I

(
Ht
J (R)

)
= ΓI

(
Ht
J (R)

)
⊆ Ht

J (R) ,

hence AssRH
t
I (R) ⊆ AssRH

t
J (R). By Remark 2.2.16 we have that

Ht
J (R)

∼= lim
e∈N

R(
xp

e

1 , . . . , x
pe

t

) ,
and so

AssRH
t
J (R) ⊆ ∪e∈N AssR

R(
xp

e

1 , . . . , x
pe

t

) .
Since R has finite F -representation type, there exist finitely generated R-modules M1, . . . ,Ms and

integers ne,1, . . . , ne,s such that

R1/pe ∼= ⊕si=1M
ne,i

i .

Thus (
R/J [q]

)1/q ∼= R/J ⊗R R1/q

∼= R/J ⊗R
(
⊕si=1M

ne,i

i

)
∼= ⊕si=1 (Mi/JMi)

ne,i .
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By Lemma 4.2.1 we have

AssRR/J
[q] = AssR

(
R/J [q]

)1/q

⊆
s⋃

1=1

AssR
Mi

JMi
.

Since each R-module Mi is finitely generated, Mi has finitely many associated primes, for every i =
1, . . . , s. We conclude Ht

I (R) has only finitely many associated primes. ■
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Chapter 5

Frobenius closed parameter ideals

During this chapter we relate Frobenius closure and parameter ideals. We begin in Section 5.1 defining
Frobenius closure and giving some results about it. In Section 5.2 we prove when Frobenius closure
is equivalent to F -injectivity. This chapter is based on the paper written by Pham Quy and Kazuma
Shimomoto [QS17].

A convention for this chapter is that R represents a Noetherian ring of characteristic p > 0.

5.1 Frobenius closure

In this section we give the definition of Frobenius closure and some facts about it, specially regarding
regular sequences.

Definition 5.1.1. Let I = (x1, . . . , xl) ⊆ R be an ideal. The Frobenius closure of I is defined as

IF =
{
u ∈ R | uq ∈ I [q], q = pe

}
.

The Frobenius closure is not only a subset of a ring, it is an ideal.

Remark 5.1.2. Note that

• 0 ∈ I, and so 0 ∈ I [q], with q = pe for every e ∈ N;

• for u, v ∈ IF , there exist q = pe and q′ = pe
′
such that uq ∈ I [q] and vq

′ ∈ I[q
′]. Then we have

uq+q
′
, vq+q

′ ∈ I[q+q
′], and so

(u+ v)
q+q′

= uq+q
′
+ vq+q

′
∈ I[q+q

′].

• for r ∈ R and u ∈ IF , there exists q = pe such that ruq ∈ I [q], and so (ru)
q
I [q].

We conclude IF is an ideal of R.

Definition 5.1.3. We say that an ideal I ⊆ R is Frobenius closed if I = IF

Frobenius closure implies the ring is reduced under certain conditions.

26



Proposition 5.1.4. Let (R,m,K) be a local ring of characteristic p > 0. Suppose x ∈ R is an element
such that (xn) is Frobenius closed for every n ∈ N. Then R is reduced.

Proof. Let u ∈ R be an element such that un = 0 for some n ∈ N. Then for every q = pe > n we have
that

uq = 0 ∈ (xq) .

This implies that for every n ∈ N
u ∈ (xn)

F
= (xn) .

By the Krull Intersection Theorem we have that

u ∈ ∩n∈N (xn) = 0.

We conclude u = 0. ■

We go a bit further taking a Frobenius closed ideal generated by regular sequence.

Proposition 5.1.5. Let x1, . . . , xl ∈ R be a sequence of elements such that forms a regular sequence in
any order and

(x1, . . . , xl) = (x1, . . . , xl)
F
.

Then for all integers n1, . . . , nl ∈ N

(xn1
1 , . . . , xnl

l ) = (xn1
1 , . . . , xnl

l )
F
.

Proof. First note that for every a ∈ (xn1
1 , . . . , xnl

l ), ap
0 ∈ (xn1

1 , . . . , xnl

l )[
p0]. Therefore a ∈ (xn1

1 , xn2
2 , . . . , xnl

l )
F
.

Now, we prove the other containment. Since x1, . . . , xl form a regular sequence, it suffices to prove
that (xn1 , x2 . . . , xl) is Frobenius closed. We proceed by induction. The case n = 1 is already done by

hypothesis. Suppose the conditions holds for n − 1. Let a ∈ (xn1 , x2 . . . , xl)
F
. We have that for some

q = pe

aq ∈ (xn1 , x2 . . . , xl)
[q] ⊆ (x1, x2 . . . , xl)

[q] ⇒ a ∈ (x1, x2 . . . , xl)
F
= (x1, x2 . . . , xl)

⇒ a = b1x1 + · · ·+ blxl

⇒ aq = bq1x
q
1 + · · ·+ bql x

q
l

⇒ bq1x
q
1 ∈ (xn1 , x2, . . . , xl)

[q]

⇒ bq1x
q
1 − cxnq1 ∈ (x2, . . . , xl)

[q]
,

for some suitable c ∈ R. Recall x1, . . . , xl form a regular sequence in any order, so we can take the

element z = bq1 − cx
(n1−1)q
1 ∈ (x2, . . . , xl)

[q]
. Thus

bq1 = z + x
(n1−1)q
1 ∈

(
x
(n1−1)
1 , x2, . . . , xl

)[q]

⇒ b1 ∈
(
x
(n1−1)
1 , x2, . . . , xl

)F
⇒ b1

(
x
(n1−1)
1 , x2, . . . , xl

)
by induction hypothesis

⇒ a = b1x1 + · · ·+ blxl ∈
(
x
(n1−1)
1 , x2, . . . , xl

)
■
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Finally, we give a theorem regarding localization in reduced rings.

Theorem 5.1.6. Frobenius closure commutes with localization. In particular, the localization of a Frobe-
nius closed ideal is Frobenius closed.

Proof. Let R be a reduced ring, and I ⊆ R an ideal. Now, we have that

u ∈ IF ⇔ uq ∈ I [q], for some q = pe

⇔ ϕ (u) ∈ IR∞

⇔ u ∈ ϕ−1 (IR∞) ∩R.

Therefore IF = ϕ−1 (IR∞) ∩R. We denote ϕ−1 (IR∞) ∩R simply as IR∞ ∩R.
Let S ⊆ R be a multiplicative set. Recall that localization is an exact functor, so it commutes with

direct limits. This is,
S−1R∞ ∼=

(
S−1R

)∞
.

Furthermore, we have that
(
S−1I

)F
= I

(
S−1R∞)

∩ S−1R.
Finally, we have that

S−1
(
IF

)
= S−1 (IR∞ ∩R)
= S−1 (IR∞) ∩ S−1R

= I
(
S−1R∞)

∩ S−1R

=
(
S−1I

)F
■

5.2 Frobenius closed parameter ideals

Parameter ideals and Frobenius closure give us an equivalence to F -injectivity in Cohen-Macaulay rings.
Proving this equivalence is the goal in this section. First we prove if a system of parameters is Frobenius
closed, then so it a part of it.

Lemma 5.2.1. If every ideal generated by a full system of parameters is Frobenius closed, then so is
every ideal generated by a part of a system of parameters.

Proof. Let (x1, . . . , xn) be a system of parameters. Without lost of generality take (x1, . . . , xt), part of

the system of parameters. Let y ∈ (x1, . . . , xt)
F
. Then for every s ≥ 0

y ∈ (x1, . . . , xt)
F ⊆

(
x1, . . . , xt, x

s
t+1, . . . , x

s
n

)F
=

(
x1, . . . , xt, x

s
t+1, . . . , x

s
n

)
.

Therefore
y ∈ ∩s∈N

(
x1, . . . , xt, x

s
t+1, . . . , x

s
n

)
= (x1, . . . , xt) .

Since (x1, . . . , xt, )
F ⊆ (x1, . . . , xt) we are done. ■

Now we prove Frobenius closure implies F-injectivity.

Theorem 5.2.2. Let (R,m,K) be a local ring. Set d = dimR. Then
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1. Assume x1, . . . , xt is a filter regular sequence such that(
xp

n

1 , . . . , xp
n

t

)
=

(
xp

n

1 , . . . , xp
n

t

)F
for all n ≥ 0. Then the Frobenius action on Hk

m (R) is injective.

2. If every parameter ideal of R is Frobenius closed, then R is F-injective.

Proof.

1. Set I = (x1, . . . , xt). By hypothesis I [p
n] is Frobenius closed, thus we have the commutative diagram

R/I R/I [p] R/I[p
2] . . .

R/I [p] R/I[p
2] R/I[p

3] . . .

φ

F̃

φ

F̃

φ

F̃

φ φ φ

where φ is the multiplication map by (x1, . . . , xt)
pe−pe−1

and F̃ is the map taking each element to
its pe power. Furthermore, note that each F̃ is injective. Taking direct limits we get the Frobenius
map

F : Ht
I(R) → Ht

I(R).

Furthermore, since I [p
n] is Frobenius closed, R is reduced by Proposition 5.1.4, and so F̃ and F

are both injective. It remains to prove that the Frobenius map on Ht
m (R) is injective. By Lemma

4.1.4, Ht
m (R) ∼= H0

m (Ht
I (R)). Consider the following commutative diagram induced by the previous

diagram

H0
m (R/I) H0

m

(
R/I [p]

)
H0

m

(
R/I[p

2]
)

. . .

H0
m

(
R/I [p]

)
H0

m

(
R/I[p

2]
)

H0
m

(
R/I[p

3]
)

. . .

φ

F̃

φ

F̃

φ

F̃

φ φ φ

By Proposition 2.2.4, we have H0
m

(
R/I [p

n]
)
⊆ R/I [p

n] for every n ∈ N. Therefore, we have the
following commutative diagram

R/I [p
n] R/I[p

n+1]

H0
m

(
R/I [p

n]
)

H0
m

(
R/I[p

n+1]
)
,

F̃

F̃

which implies that every F̃ is injective. Note that taking direct limit of both lines we get the
Frobenius map on Ht

m (R). Since local cohomology commutes with direct limits and F̃ is injective,
we conclude that R is F injective.
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2. By the Prime Avoidance Theorem we can get a filter regular sequence. Furthermore, since the set
of minimal primes are contained in the set of associated primes, this filter regular sequence is also
a system of parameters. Let {x1, . . . , xd} be such sequence and I = (x1, . . . , xt) with 0 ≤ t ≤ d. By
hipothesis I is Frobenius closed, and so by Lemma 5.2.1, I [p

n] is Frobenius closed for every n ∈ N.
Finally, by 1, we conclude R is F -injective.

■

Finally, we prove the equivalence we mention in the beginning of this section.

Corollary 5.2.3 ([QS17]). Let (R,m,K) be a local Cohen-Macaulay ring. The following are equivalent

1. every parameter ideal is Frobenius closed;

2. there is a parameter ideal of R that is Frobenius closed;

3. R is F -injective.

Proof. Suppose there exists a parameter ideal I = (x1, . . . , xk) which is Frobenius closed. Since R is
Cohen-Macaulay, {x1, . . . , xk} is also a regular sequence. By Proposition 5.1.5 (xn1

1 , . . . , xnk

k ) is Frobenius
closed for all integers n1, . . . , nk. Finally, Theorem 5.2.2, implies that R is F -injective.

Finally, suppose R is F -injective. Let x1, . . . , xd be a system of parameters. Since R is Cohen-

Macaulay, x1, . . . , xd is also a regular sequence. Let c =
[

a

x
t1
1 ···xd

]
∈ Hd

m (R) for some a
xt
1···xt

d
∈ Cd

(see Remark 2.2.12). Note that c = 0, then a
xt
1···xt

d
∈

∑d
i=1Rx1···x̂i···xd

. Thus we have that for some

c1, . . . , cd ∈ R

a

xt1 · · ·xtd
=

d∑
i=1

ci
xt1 · · ·xtd

⇔ a =

d∑
i=1

cix
t
i

⇔ a ∈
(
xt1, . . . , x

t
d

)
Now if u ∈ (x1, . . . , xd)

F
, there exists q = pe for some e > 0 such that uq ∈ (x1, . . . , xd)

[q]
. Therefore[

u

x1 · · ·xd

]q
=

[
uq

xq1 · · ·x
q
d

]
= 0

Since R is F -injective, we have
[

u
x1···xd

]
= 0 and so u ∈ (x1, . . . , xd).

Finally, recall we can always get a filter regular sequence, which is a system of parameters. Hence we
have the equivalence from 1 to 2. ■
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Chapter 6

F-purity

This chapter is about F -purity. We begin Section 6.1 talking about purity in order to prove the equivalence
between F -purity and F -splitness. We also give conditions for the equivalence between F -injectiveness
and F -purity and characterized F -purity using the Frobenius closure. We finish the section proving that
regularity implies F -purity. In Section 6.2 we give some properties of anti-nilpotent modules which are
applied in the following section. In Section 6.3 we review an example of an F -injective ring that is not
F -pure. This example was given by Pham Quy and Kazuma Shimomoto [QS17].

6.1 Purity

In this section we first recall some propositions about pure maps in rings not necessarily of charateristic
p > 0. Hence, just for this section, R denotes a Noetherian commutative ring of not necessarily prime
characteristic. If M is an R-module, then assume M is finitely generated. Later in this section we work
with prime characteristic rings in order to give an equivalent definition of F -purity and an equivalence
with F -injectivity. Then we prove F -purity implies Frobenius closed.

We recall a result from pure maps

Lemma 6.1.1. Let (R,m) be a local ring. Then the map R→M is pure if and only if E⊗RR→ E⊗RM
is injective, where E is the injective hull of R/m.

We want to prove the equivalence between purity and splitness. First we see splitness implies purity.

Proposition 6.1.2. Let R be a domain and φ :M → N an R-linear map that splits. Then, φ is pure.

Proof. As φ splits, we have that N =M ⊕ S for some R-module S. Consider an R-module T . Then

N ⊗R T = (M ⊗R T )⊕ (S ⊗R T ) .

Hence the map φ⊗R IdT :M ⊗R T → N ⊗R T is injective. We conclude φ is pure. ■

To see that purity implies splitness we need some results

Theorem 6.1.3. Let R be a ring,

0 E′ E E′′ 0
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be an exact sequence, and

φ : F1 F0

be a homomorphism of free modules of finite rank. Let M = Cokerφ and M ′ = Cokerφ∗. Then

Ker (M ′ ⊗ E′ →M ′ ⊗ E) ∼= Coker (Hom (M,E) → Hom(M,E′′)) .

Proof. Consider

E : 0 E′ E E′′ 0α β

and

F : F1 F0 M 0.
φ π

We have the following sequences

0 E′′∗ E∗ E′∗β∗
α∗

and

0 M∗ F ∗
0 F ∗

1 M ′ 0.π∗ φ∗
θ

Form the following double complex

0 0 0

M∗ ⊗ E′ M∗ ⊗ E M∗ ⊗ E′′

F ∗
0 ⊗ E′ F ∗

0 ⊗ E F ∗
0 ⊗ E′′

F ∗
1 ⊗ E′ F ∗

1 ⊗ E F ∗
1 ⊗ E′′.

The modules Fi are free, so they are projective. In addition, Hom (Fi, •) ∼= Hom(Fi, R)⊗•, so we get

0 0 0

0 M∗ ⊗ E′ M∗ ⊗ E M∗ ⊗ E′′

0 F ∗
0 ⊗ E′ F ∗

0 ⊗ E F ∗
0 ⊗ E′′ 0

0 F ∗
1 ⊗ E′ F ∗

1 ⊗ E F ∗
1 ⊗ E′′ 0.

By the right exactness of the tensor product, we have the sequence
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F ∗
0 ⊗G F ∗

1 ⊗G M ′ ⊗G 0.
φ∗⊗IdG θ⊗IdG

for every R-module G. Then, M ′ ⊗G ∼= Coker (φ∗ ⊗G). Now we complete the complex and simplify the
notation

0 0 0

0 M∗ ⊗ E′ M∗ ⊗ E M∗ ⊗ E′′

0 F ∗
0 ⊗ E′ F ∗

0 ⊗ E F ∗
0 ⊗ E′′ 0

0 F ∗
1 ⊗ E′ F ∗

1 ⊗ E F ∗
1 ⊗ E′′ 0

0 M ′ ⊗ E′ M ′ ⊗ E M ′ ⊗ E′′ 0

0 0 0 .

Applying the Snake’s Lemma, we have the exact sequence

M∗ ⊗ E′ M∗ ⊗ E M∗ ⊗ E′′

M ′ ⊗ E′ M ′ ⊗ E M ′ ⊗ E′′.

d

We have that
M∗ ⊗ E′′

Ker (d)
∼= Im (d)

Note that, Ker (d) = Im (IdM∗ ⊗β) and Im (d) = Ker (IdM ′ ⊗α). Therefore,

Coker (IdM∗ ⊗β) = M∗ ⊗ E′′

Im (IdM∗ ⊗β)

=
M∗ ⊗ E′′

Ker (d)

= Im (d)

=Ker (IdM ′ ⊗α) .

■

Corollary 6.1.4. Let R be a Noetherian ring. Then the exact sequence

0 E′ E E′′ 0

is pure if and only if for every finitely generated module N , the morphism

θ : Hom (N,E) → Hom(N,E′′)
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is surjective.

Proof. For this part, we use a finitely generated module N . Then, we have an exact sequence

0 K F N 0w φ

where both K and F are free modules of finite rank. Consider the R-module map

w∗ : F ∗ → K∗.

Note that F ∗ andK∗ are finitely generated. Hence, Im (w∗) is finitely generated. LetM = Coker (w∗),
which is finitely presented.

Now, suppose the exact sequence from the statement is pure. By Theorem 6.1.3, we have the exact
sequence

Hom (N,E) Hom (N,E′′) M ⊗ E′ M ⊗ E.
j d h

Since h is injective, we get Im d = Ker d = 0. We conclude that j is surjective.
For the converse, we use that M is finitely generated. Note that w∗∗ = w and Cokerw∗∗ = N .

Likewise, applying Theorem 6.1.3, we get the exact sequence

Hom (M,E) Hom (M,E′′) N ⊗ E′ N ⊗ E.d̃ h̃

Then Ker h̃ = Im d̃ = 0. As the functor • ⊗N is right-exact, we conclude that the exact sequence in
the statement is pure.

■

As a corollary we get the follwing.

Corollary 6.1.5 ([HR76]). Let R be a Noetherian ring. Then the exact sequence

0 E′ E E′′ 0.

If E′′ is finitely generated, then the exact sequence is pure if and only if it splits.

Proof. Let θ : E → E′′ be the morphism in the statement. Suppose the sequence is pure. By the first
part, we have

Hom (E′′, E) Hom (E′′, E′′) 0.

In particular, there exists a φ ∈ Hom(E′′, E) such that it is the preimage of the identity homomor-
phism. Therefore

(φ ◦ θ) (1) = 1.

Finally, let N be a finitely generated module, and be φ a splitting for θ. We show that for every
β ∈ Hom(N,E′′), there exists an element in α ∈ Hom(N,E) such that θ ◦ α = β. Take α = φ ◦ β. Then

(θ ◦ α) (x) = (θ ◦ φ ◦ β) (x)
=β (x) .

By Corollary 6.1.4, we are done. ■
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Finally, we have the equivalence of F -purity and F -splitness.

Corollary 6.1.6. Let R be a Noetherian ring of characteristic p. Let R be F -finite. Then R is F -split
if and only if R is F -pure.

Proof. This follows directly from 6.1.5. ■

Before proving the equivalence condition to F -purity, we give some results on Gorenstein rings

Lemma 6.1.7. Let (S,m) ⊆ (S∗, n) be Gorenstein rings, and assume that S∗ is a finitely generated free
S-module. The

1. HomS (S
∗, S) ∼= S∗ as an S∗-module.

2. Let T be a generator for HomS (S
∗, S) as an S∗-module, H be an ideal in S∗, I be an ideal in S

and s ∈ S∗. Then the image of H under the isomorphism sT : S∗ → S is contained in I if and
only if s ∈ (IS∗ :S∗ H).

Proof. First we prove the isomorphism between HomS (S
∗, S) and S∗. Since S and S∗ are Gorenstein,

Remark 2.2.20 implies that ωS ∼= S and ωS∗ ∼= S∗, where ωS and ωS∗ are canonical modules for S and
S∗, respectively. Then by Theorem 2.2.21 we have that

HomS (S
∗, S) ∼= HomS (S

∗, ωS)
∼= ωS∗

∼= S∗.

Now, we prove 2. Note that sT (H) ⊆ I if and only if sT (σS∗), for every σ ∈ H, and this happens if
and only if sσT (S∗), for every σ ∈ H. Hence, it suffices to prove that sσ ∈ IS∗, for every σ ∈ H.

Let {m1, . . . ,mn} be a basis for S∗ as S-module. Consider the maps m̂i ∈ HomS (S
∗, S) given by

m̂i (y) =

{
1 y = mi

0 y ̸= mi,

for every i ∈ {1, . . . , n}. Hence we have a dual basis for given by {ϕi | ϕi = m̂iT, i = 1, . . . , n}. Therefore
we have that for every σ ∈ H, sσT (S∗) ⊆ I if and only if for every i = 1, . . . , n, sσT (mi) = li ∈ I. By
the choice of basis this happens if and only if sσT = (

∑n
i=1 lim̂i)T . Finally, since T is a generator for

HomS (S
∗, S) as an S∗−module, this happens if and only if sσ =

∑n
i=1 limi ∈ IS∗. ■

Under the assumptions of Lemma 6.1.7, we have the following corollary.

Corollary 6.1.8. Let (S,m) ⊆ (S∗, n) be Gorenstein rings, and assume that S∗ is a finitely generated
free S-module. Let T be a generator for HomS (S

∗, S) as an S∗-module, H be an ideal in S∗, I be an
ideal in S. Then there exists an isomorphism given by

ψ :
(IS∗ :S∗ H)

IS∗ → HomS (S
∗/H, S/I)

s 7→ sT
(
t
)
= sT (t).
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Proof. Let s ∈ S∗. By Lemma 6.1.7, we have that sT (H) ⊆ I if and only if s ∈ (IS∗ :S∗ H). Furthermore,
we have that s ∈ IS∗ implies sT (S∗) ⊆ I, and so sT ≡ 0. Therefore ψ is a well defined function. Since
T is a generator, we have that ψ is a homomorphism of S∗-modules.

To see ψ is injective, let s ∈ kerψ. Then sT = 0, this is sT (S∗) ⊆ I. By Lemma 6.1.7, s ∈ IS∗.
Finally, we see ψ is surjective. Since S∗ is a finitely generated free S-module, it is projective. Hence

for every ϕ : S∗/H → S/I, there exists a map ϕ0 : S∗ → S such that the following diagram commutes

S∗ S∗/H

S S/I

π

ϕ

π

ϕ0

Since ϕ0 ∈ HomS (S
∗, S) and T is a generator, there exists s ∈ S∗ such that ϕ0 = sT . Hence ϕ = sT .

■

Now we assume that S is a ring of characteristic p > 0. Note that S ∼= S1/p as rings. Then we have
that IS1/p ∼= I [p]. Then we have the following corollary.

Corollary 6.1.9. Let S is an F -finite regular local ring and R = S/I, where I ⊆ S is an ideal. Let T be a
generator of HomS

(
S1/p, S

)
as S1/p-module. Then there exists an isomorphism ψ :

[(
I [p] : I

)
/I

]
R1/p →

Hom
(
R1/p, R

)
ψ :

(
I [p] : I

)
I

R1/p → HomR

(
R1/p, R

)
s 7→ sT

(
t
)
= sT (t).

Proof. This follows from Corollary 6.1.8. ■

Theorem 6.1.10 ([Fed83]). Let (S,m) be a F -finite regular local ting and let R = S/I. Then R is
F -pure if and only if

(
I [p] : I

)
⊈ m[p].

Proof. By Definition 3.2.15, the Frobenius map on R splits if and only if there exists ϕ ∈ HomR

(
R1/p, R

)
,

such that π
(
11/p

)
= 1, this is, ϕ (R) ⊈ m̃.

Since S is regular, it is Gorenstein. By Lemma 6.1.7, we take T a generator of HomS

(
S1/p, S

)
as S1/p-module. Hence π = sT for some s ∈ S1/p. By Lemma 6.1.7, sT

(
S1/p

)
⊈ m if and only if

s /∈
(
m[p] : S1/p

)
= m[p].

■

Under certain conditions, F -injectivity is equivalent to F -purity.

Theorem 6.1.11 ([Fed83]). Let (R,m) is a local reduced ring of characteristic p > 0 of dimension d, and
F -finite. If R is F -pure, then R is F -injective. Conversely, if R is Gorenstein, F -finite and F -injective,
R is F -pure.

Proof. First suppose R is F -pure. By Corollary 6.1.5, R is F -split. Using the definition of local co-
homology taken from the Koszul cohomology, we get that Hi

m (R) is F -pure for every i. By Definition
3.2.15,

Hi
m

(
R1/p

)
∼= Hi

m (R)⊕Hi
m (M) for all i.
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Hence R is F -injective.
Now, suppose R is F -injective and Gorenstein. Then we have the injective map

Hi
m (R) Hi

m

(
R1/p

)
,F

and so, using the Matlis duality we have the surjective map(
Hi

m

(
R1/p

))∨ (
Hi

m (R)
)∨
.α

Note that (
Hd

m (R)
)∨

= HomR

(
Hd

m (R) ,ER (K)
)

∼= HomR (HomR (ωR,ER (K)) ,ER (K))
∼= HomR (HomR (R,ER (K)) ,ER (K))
∼= R∨∨

∼= R.

On the other hand Since R1/p is Gorenstein,

(
Hd

m

(
R1/p

))∨
=

(
R1/p ⊗Hd

m (R)
)
∨

∼=
(
R1/p ⊗ ER

)∨

∼= HomR

(
R1/p ⊗ ER, ER

)
∼= HomR

(
R1/p, E∨

)
∼= HomR

(
R1/p, R

)
∼= R1/p.

Thus, there exists f1/p ∈ R1/p such that α
(
f1/p

)
= 1, and so the map α ◦ f1/p sends 11/p to 1. We

conclude R is F -split, hence F -pure. ■

Now we prove that F -purity implies Frobenius closed.

Theorem 6.1.12. Let R be an F -pure Noetherian ring of characteristic p > 0. Then for every ideal
I ⊆ R, I = IF .

Proof. We know that I ⊆ IF . We want to show IF ⊆ I. Let u ∈ IF . Then there exists q = pe such that
uq ∈ I [q] Consider the map

R R1/q.F

SinceR is F -pure, the map F⊗RIdR/I is injective. SinceR⊗RR/I ∼= R/I andR1/q⊗RR/I ∼= R1/q/IR1/q,
the map F ⊗R IdR/I induces a map

R/I R1/q/IR1/q.
φ
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Note that φ is injective since the following diagram commutes

R⊗R R/I Rq ⊗R R/I

R/I R1/q/IR1/qφ

∼= ∼=

Recall that IR1/q =
(
I [q]

)1/q
. Hence, we have that

φ (u) =
[
(uq)

1/q
]
∈ IRq.

Since φ is injective, u ∈ I.
■

6.2 F-anti-nilpotent rings

During this section R denotes a Noetherian ring of characteristic p > 0. Now we see anti-nilpotent
modules in exact sequences.

Lemma 6.2.1.

1. Let

0 L M N 0
f g

be a short exact sequence of R {F}-modules. Then M is anti-nilpotent if and only if so are L and
N .

2. Let

L M N
β α

be an exact sequence of R {F}-modules such that L is anti-nilpotent and F acts injectively on N .
Then F acts injectively on M .

Proof. We prove 1. If L and N are both anti-nilpotent, by the Five Lemma M is anti-nilpotent too.
Now, suppose M is anti-nilpotent. Let T ⊆ L be an F -stable submodule. Then T ⊆ M is an F -stable
submodule ofM , hence F acts injectively onM/T . Since the Frobenius action on L/T is the composition
of the Frobenius action on M/T and the inclusion L/T ↪→M/T , we have that L is anti-nilpotent.

To prove that N is F -anti-nilpotent, recall that N ∼=M/L. Hence, is A ⊆ N is an F -stable submodule,
we have that N/A ∼= M/π−1 (A), where π : M → M/L is the projection map. Since A is an F -stable
N -submodule, π−1 (A) is an F -stable M -module. We conclude N is F -anti-nilpotent

Now we prove 2. Consider the short exact sequence

0 Ker (α) M Im (α) 0.

We have that kerα = Imβ ∼= L/Kerβ. Since Kerβ ⊆ L is a F -stable R {F}-subquotient and L is
anti-nilpotent, F acts injectively on Kerα. On the other hand Imα ⊆ N is a R {F}-submodule and F
acts injectively on N , hence F acts injectively on Imα. By 1, F acts injectively on M . ■
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Theorem 6.2.2 ([QS17]). Let (R,m) be a F -finite local ring. Suppose there exist ideals I, I ⊆ R such
that R/ (I + J) is F -pure, and R/I,R/J are F -injective. Then R/ (I ∩ J) is F -injective.

Proof. We have the short exact sequence

0 R/ (I ∩ J) R/I ⊕R/J R/ (I + J) 0
f

were f (a) = (a,−a) and g (c, b) = c + b. Note that both f, g commutes with the Frobenius map. This
induces the long exact sequence

· · · Hi−1
m (R/ (I + J)) Hi

m (R/ (I ∩ J)) Hi
m (R/I)⊕Hi

m (R/J) · · ·h1 h2

Since R/ (I + J) is F -pure, by Proposition 3.2.24, it is F -anti-nilpotent. Note that F acts injectively on
Hi−1

m (R/ (I + J)). Using that both R/I and R/J are F -injective, its direct sum is also F -injective. By
Lemma 6.2.1, R/ (I ∩ J) is F -injective. ■

Similarly we have the version of this proposition with the property of being F -anti-nilpotent.

Proposition 6.2.3. Let (R,m) be a local ring. Suppose there exists ideals I, J ⊆ R such that R/ (I + J),
R/I and R/J are F -anti-nilpotent. Then R/ (I ∩ J) is F -anti-nilpotent.

Proof. We have the short exact sequence

0 R/ (I ∩ J) R/I ⊕R/J R/ (I + J) 0
f

as in Theorem 6.2.2, which induces the long exact sequence

· · · Hi−1
m (R/ (I + J)) Hi

m (R/ (I ∩ J)) Hi
m (R/I)⊕Hi

m (R/J) · · ·h1 h2

Since both R/I,R/J are F -anti-nilpotent, then so is R/I⊕R/J . By Lemma 6.2.1 we have that R/ (I ∩ J)
is F -anti-nilpotent. ■

6.3 Examples

The goal in this section is to give an example of a ring that is F -injective but not F -pure. During this
section K denotes a perfect field of prime characteristic p.

Lemma 6.3.1. Let R = K[[U, V, Y, Z]]/
(
UV,UZ,Z

(
V − Y 2

))
. Then R is F -anti-nilpotent, and so F -

injective.
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Proof. First note that(
UV,UZ,Z

(
V − Y 2

))
=

(
U, V − Y 2

)
∩ (Z,U) ∩ (Z, V ) =

(
U, V − Y 2

)
∩ (Z,UV )

Let I =
(
U, V − Y 2

)
and J = (Z,UV ). Then we have that I+J =

(
U, V − Y 2, Z

)
. Let S = K[[U, V, Y, Z]].

Then we have that both S/I and S/ (I + J) are regular rings. By Theorem 3.2.14, both rings are F -pure.

Furthermore, since r = Zp−1Up−1V p−1 ∈
(
(Z,UV )

[p]
: (Z,UV )

)
and Z /∈ (U, V, Y, Z)

[p]
, by Fedder’s

criterion S/J is F -pure. By Proposition 3.2.24 S/J is F -anti-nilpotent. By Proposition 6.2.3, the ring
R/ (I ∩ J) is F -anti-nilpotent. ■

Now we present an example of a F -injective ring which is not F -pure.

Example 6.3.2 ([QS17]). Let S = K[[U, V, Y, Z, T ]], I = (T ) , J =
(
UV,UZ,Z

(
V − Y 2

))
, R = S/ (I ∩ J) .

By Lemma 6.3.1, S/J is F -anti-nilpotent. Since S/I is regular it is F -pure, and so F -anti-nilpotent.
Moreover, S/ (I + J) ∼= K[[U, V, Y, Z]]/I, so it is F -anti-nilpotent. Hence, by Theorem 6.2.3, R is also
F -anti-nilpotent, and so F -injective.

Now, let u, v, y, z, t be the image of U, V, Y, Z, T in R, respectively. Note that (t) ∈ AssR and

R/ (t) ∼= K[[U, V, Y, Z]]/ (t) ∼= K[[U, V, Y, Z]].

Therefore dimR/ (t) = 4. Using Macaulay2, we have that the associated primes of R are (t) , (z, v) , (z, u) ,(
u, y2 + v

)
. Furthermore, (t) is the only associated prime satisfying this.

Let a = y2
(
u2 − z4

)
. Then a is a parameter element. Since a ∈ (u, z), then a is a zero divisor in R.

We want to show that (a) ⊆ R is not Frobenius closed. Note that in R/ (a)
[p]

we have that(
y3z4t

)p
= y3pz4ptp

= y3p−2tp
(
y2z4p

)
= y3p−2tp

(
vu2p

)
= y3p−2u2pvtp

= 0.

Hence
(
y3z4t

)p ∈ (a)
[p]
. However, if y3z4t ∈ a, then

Y 3Z4T = A
(
Y 2

(
U2 − Z4

))
+B (TUV ) + C (TUZ) +D

(
TZ

(
V − Y 2

))
,

for some A,B,C,D ∈ S. Hence A = TA′, for some A′ ∈ S, and so

Y 3Z4 = A′ (Y 2
(
U2 − Z4

))
+B (UV ) + C (UZ) +D

(
Z
(
V − Y 2

))
.

In S/ (U, V ), we have that
Y 3Z4 = A′ (−Y 2Z4

)
+D′ (ZY 2

)
.

Furthermore, A′ = −Y and D = D′U o D = D′V , for some D′ ∈ S. Then in S we have that

Y 3Z4 = −Y 3U2 + Y 3Z4 +B (UV ) + C (UZ) +D
(
Z
(
V − Y 2

))
,

and so
Y 3U2 = B (UV ) + C (UZ) +D

(
Z
(
V − Y 2

))
.
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Thus D = UD′, and
Y 3U = B (V ) + C (Z) +D′ (Z (

V − Y 2
))

∈ (V,Z) ,

which is a contradiction. We conclude (a) is not Frobenius closure, and so R is not F -pure by Theorem
6.1.12.
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Chapter 7

Deformation of singularities

During this chapter we talk about deformation of singularities. In Section 7.1 we define surjective elements
and give some properties on local cohomology. Section 7.2 is devoted to prove the deformation of F -full
rings and F -anti-nilpotent rings. Finally in Section 7.3 we define strongly F -injectivity and prove the
deformation of F -injectivity under certain conditions.

In this chapter we consider a Noetherian local ring (R,m) of characteristic p > 0.

7.1 Surjective elements

During this section we define surjective elements and state relations with some F -singularities. In addi-
tion, using these elements, we construct a family of non F -full local rings. Finally we prove F -full implies
F -injective.

Definition 7.1.1. Let x ∈ R be a regular element. We say x is a surjective element if the natural map
on the local cohomology

Hi
m (R/ (xn)) → Hi

m (R/ (x))

induced by R/ (xn) → R/ (x) is surjective for every n > 0 and for every i ≥ 0.

Proposition 7.1.2. The following are equivalent

1. x is a surjective element

2. For all 0 < h ≤ k the multiplication map

R/
(
xh

)
R/

(
xk

)xk−h

induces an injection

Hi
m

(
R/

(
xh

))
Hi

m

(
R/

(
xk

))
for each i ≥ 0.
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3. For all 0 < h ≤ k the short exact sequence

0 R/
(
xh

)
R/

(
xk

)
R/

(
xk−h

)
0xk−h

induces a short exact sequence

0 Hi
m

(
R/

(
xh

))
Hi

m

(
R/

(
xk

))
Hi

m

(
R/

(
xk−h

))
0

for each i ≥ 0.

Proof. First suppose x is a surjective element. Then the map xk−h is injective. We proceed by induction
on n, where k = l + n. Suppose k = l + 1. We have the following short exact sequence

0 R/
(
xh

)
R/

(
xh+i

)
R/ (x) 0·x

which induces a long exact sequence

· · · Hi−1
m

(
R/

(
xh+i

))
Hi−1

m (R/ (x)) Hi
m

(
R/

(
xh

))
Hi

m

(
R/

(
xh+1

))
· · ·β1 δ β2

Note that x is a surjective element, hence β1 is surjective, and so δ is the zero map. We conclude β2 is
injective.

Now, suppose

Hi
m

(
R/

(
xh

))
Hi

m

(
R/

(
xk

))
is an injection for k = h+ n. Set h′ = h+ n. By induction hypothesis we have that

Hi
m

(
R/

(
xh

′
))

Hi
m

(
R/

(
xk+1

))
is injective.

Suppose that 2 holds. Consider the short exact sequence

0 R/
(
xh

)
R/

(
xk

)
R/

(
xk−h

)
0xk−h

By 2, we have that

Hi
m

(
R/

(
xh

))
Hi

m

(
R/

(
xk

))
is injective for every i ≥ 0. Hence for every i ≥ 0

0 Hi
m

(
R/

(
xh

))
Hi

m

(
R/

(
xk

))
Hi

m

(
R/

(
xk−h

))
0

Finally, suppose 3 holds. Taking k = h+ 1 we have that

0 Hi
m

(
R/

(
xh

))
Hi

m

(
R/

(
xh+1

))
Hi

m (R/ (x)) 0

Hence we conclude x is a surjective element. ■
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Proposition 7.1.3. The following are equivalent:

1. x is a surjective element.

2. The multiplication map

Hi
m (R) Hi

m (R)x

is surjective for all i ≥ 0.

Proof. By Proposition 7.1.2, the element x is surjective if and only if for every h, k ∈ N with 0 < h ≤ k
the map

Hi
m

(
R/

(
xh

))
Hi

m

(
R/

(
xk

))·xk−h

is injective. This is equivalent to have the direct limit system consisting on
({
Hi

m

(
R/

(
xh

))}
h≥1

, ·xk−h
)

such that
Φh : Hi

m

(
R/

(
xh

))
→ lim

h
Hi

m

(
R/

(
xh

))
,

is injective for every h ∈ N and every i ∈ N. By the work of Horiuchi, Miller and Shimomoto [[HMS14],
Lemma 2.2],

lim
h
Hi

m

(
R/

(
xh

)) ∼= Hi
m

(
H1

(x) (R)
)
∼= Hi+1

m (R) .

Consider the short exact sequence

0 R R R/
(
xh

)
0·xh

This induces a long exact sequence

· · · Hi
m (R) Hi

m (R) Hi
m

(
R/

(
xh

))
Hi+1

m (R) Hi+1
m (R) · · ·

Since each Φh is injective, we are done. ■

Proposition 7.1.4. Let x be a regular element. If R/ (x) is full, then x is a surjective element. In
particular, if R/ (x) is F -anti-nilpotent, then x is a surjective element.

Proof. Consider the map

F̃ : R/ (x) → R/
(
xp

e
)

[r] 7→ [F (r)]

Note that for any [r] ∈ R/ (x), we have that

π ◦ F̃ ([r]) = π [F (r)]

= [F (r)]

= F ([r]) ,
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where π : R/
(
xp

e) → R/ (x). This is, the following diagram commutes

R/ (x) R/ (x)

R/
(
xp

e)

F

πF̃

which induces the following commutative diagram

R/ (x)⊗Hi
m (R/ (x)) Hi

m (R/ (x))

Hi
m

(
R/

(
xp

e))

φ

πψ

where φ ([r]⊗ v) = [r]F (v) and ψ ([r]⊗ v) = [r] F̃ (v). Furthermore, since R/ (x) is F -full, φ is surjective.
Hence π ◦ ψ is surjective, and so is π. We conclude x is a surjective element. ■

These propositions allow us to construct a family of non F -full local rings.

Example 7.1.5. Let (R,m) be a local ring with finite length cohomology, this is, Hi
m (R) has finite

length for every i < dimR. Let x ∈ R be a regular element. We want to show that being F -full implies
being Cohen-Macaulay. Suppose R/(x) is F -full. By Proposition 7.1.4, x is a surjective element. Hence

Hi
m (R) Hi

m (R)·x

is surjective for every i ≥ 0. This is, we have a descending chain

· · · ⊊ x3Hi
m (R) ⊊ x2Hi

m (R) ⊊ xHi
m (R) = Hi

m (R) .

However, since R has finite length cohomology and x is a regular element, there exists n ∈ N such that
xn annihilates Hi

m (R) for every i < dimR. Again, since x is a regular element Hi
Hi

m(R) (R) = 0 for every

i < dimR. Therefore, R is Cohen-Macaulay.

We can now prove a different version of Proposition 3.3.6 taking now R/(x) F -full.

Remark 7.1.6. Let R/(x) be F -full. Then by 7.1.4 is a surjective element. Using the idea of the proof
form Proposition 3.3.6,

0 R R R/(x) 0

0 R R R/(x) 0

·x

·x

FFxp−1F

induces

0 Ht−1
m (R/(x)) Ht

m (R) Ht
m (R) · · ·

0 Ht−1
m (R/(x)) Ht

m (R) Ht
m (R) · · ·

α ·x

α ·x

F e
xpe−1F eF e
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Note that if for some i Hi
m (R) ̸= 0 and finitely generated, then Hi

m (R) has finite length. Thus, there
exists e ≫ 0 such that mp

e−1Hi
m (R) = 0, and so xp

e−1F e = 0. Hence F e = 0 on Ht−1
m (R/(x)) for some

e≫ 0. Since R/(x) is F -full,

0 = Ht−1
m (R/(x)) = F e

(
Ht−1

m (R/(x))
)
R.

Therefore, ·x is an injection, which is a contradiction since sup (Ht
m (R)) = {m}. We conclude depthR =

fm (R).

Proposition 7.1.7. Let x ∈ R be a regular element, and let s be a positive integer such that

Hs−1
m (R) Hs−1

m (R/x)·x

is surjective and the Frobenius action on Hs−1
m (R/(x)) is injective. Then the map

Hs
m (R) Hs

m (R)xp−1F

is injective

Proof. Consider the following commutative diagram

0 R R R/(x) 0

0 R R R/(x) 0

·x

·x

FFxp−1F

Since ·x is surjective in Hs−1
m (R), we have the induced commutative diagram

0 Hs−1
m (R/(x)) Hs

m (R) Hs
m (R) · · ·

0 Hs−1
m (R/(x)) Hs

m (R) Hs
m (R) · · ·

α ·x

α ·x

Fxp−1FF

Take y ∈ Ker
(
xp−1F

)
∩ Soc (Hs

m (R)). Since x is a regular element, x ∈ m, and so xy = 0. Hence, there

exists z ∈ Hs−1
Hs

m(R) (R/(x)) such that α (z) = y. Furthermore,

(α ◦ F ) (z) = xp−1F (α (z))

= xp−1F (y)

= 0

Since F and α are both injective, we have that z = y = 0. We conclude xp−1F is injective. ■

Corollary 7.1.8. For x ∈ R a regular element, if R/(x) is F -full, then R is F injective.

Proof. The proof follows from Proposition 7.1.4 and Proposition 7.1.7. ■
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7.2 Deformation of F -full and F -anti-nilpotent singularities

Our goal in this section is to prove that given an element x in R, if R/(x) is either F -anti-nilpotent or
F -full, then so is R.

Lemma 7.2.1. Let x be a surjective element of R. Let N ⊆ Hi
m be an F -stable submodule. Let L =

∩t∈Nx
tN . Then L is an F -stable submodule of Hi

m (R) and we have the following commutative diagram
for every e ≥ 1

0 Hi−1
m (R/(x)) /ϕ−1 (L) Hi

m (R) /L Hi
m (R) /L 0

0 Hi−1
m (R/(x)) /ϕ−1 (L) Hi

m (R) /L Hi
m (R) /L 0

ϕ ·x

ϕ ·x

F e
xpe−1F eF e

where ϕ : Hi−1
m (R/(x)) → Hi

m (R).

Proof. Since x is a surjective element, by Proposition 7.1.3 the map x : Hi
m(R)→ Hi

m(R) is surjective for
all i > 0. Consider the following diagram

0 R R R/(x) 0

0 R R R/(x) 0

·x

·x

F eF e
xpe−1F e

which induces the diagram

0 Hs−1
m (R/(x)) Hs

m (R) Hs
m (R) · · ·

0 Hs−1
m (R/(x)) Hs

m (R) Hs
m (R) · · ·

α ·x

α ·x

F e
xpe−1F eF e

where the rows are short exact sequences since the map x is surjective. Therefore to prove the lemma it
suffices to prove that L is F -stable and

0 Hi−1
m (R/(x)) /ϕ−1 (L) Hi

m (R) /L Hi
m (R) /L 0

ϕ ·x

is exact. Let n ∈ N , then since N is F -stable

F e
(
xtn

)
= xtp

e

n

= xt
(
xt(p

e−1)n
)

∈ xtN.

Hence L is F -stable. Now note that

Im (ϕ) = ker (·x) = 0 :Hm(R) x

Therefore L+ Im (ϕ) ⊆ L :Hm(R) x
On the other hand, let y ∈ L :Hm(R) x. Then xy ∈ L. Since L = xL, there exists z ∈ L such that

yx = zx. Hence x(y − z) = 0, and so y − z ∈ Im (ϕ). Finally y = z + y − z ∈ L + Im (ϕ). Thus
L+ Im (ϕ) = L :Hm(R) x. We conclude the exactness of the sequence. ■
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Theorem 7.2.2 ([MQ18]). Let x ∈ R be a regular element. The we have

1. If R/(x) is F -anti-nilpotent, then so is R.

2. If R/(x) is F -full, then so is R.

Proof.

1. Let N ⊆ Hi
m (R) be an F -stable submodule. Since R/(x) is F -anti-nilpotent, by Proposition 7.1.4,

x is a surjective element. Let L = ∩t∈Nx
tN . By Lemma 7.2.1, we have the following commutative

diagram

0 Hi−1
m (R/(x)) /ϕ−1 (L) Hi

m (R) /L Hi
m (R) /L 0

0 Hi−1
m (R/(x)) /ϕ−1 (L) Hi

m (R) /L Hi
m (R) /L 0

ϕ ·x

ϕ ·x

F e
xpe−1F eF e

Since ϕ is a map of R{F}-modules, we have that ϕ and F e commutes and so L is F -stable.

We claim the map xp
e−1F e is injective. Take y ∈ Ker

(
xp

e−1F e
)
∩ Soc

(
Hi

m (R) /L
)
. Then xy = 0,

and so there exists z ∈ Hi−1
m (R/(x)) /ϕ−1 (L) such that ϕ (z) = y. Furthermore F e (z) = 0. Since

F is injective on Hi−1
m (R/(x)) /ϕ−1 (L), so is F e, and so z = y = 0.

Now, we have the descending chain

· · · ⊆ x3N ⊆ x2N ⊆ N ⊂ N.

Since Hi
m (R) is Artinian, ∩t∈Nx

tN = xnN for some n≫ 0. Hence for e≫ 0

xp
e−1 (N) ⊆ xp

e−1N = L.

Since xp
e−1F is injective, N ⊆ L, and so N = L. Finally, let r ∈ Hi

m (R) /L be such that F (r) = 0.
Therefore xp

e−1F e (r) = 0 and so r = 0. We conclude R is F -anti-nilpotent.

2. Let N = F
(
Hi

m (R)
)
R. Then N is F -stable. Since R/(x) is F - full, by Proposition 7.1.4, x is

a surjective element. Let L = ∩t∈Nx
tN . By Lemma 7.2.1, we have the following commutative

diagram

0 Hi−1
m (R/(x)) /ϕ−1 (L) Hi

m (R) /L Hi
m (R) /L 0

0 Hi−1
m (R/(x)) /ϕ−1 (L) Hi

m (R) /L Hi
m (R) /L 0

ϕ ·x

ϕ ·x

F e
xpe−1F eF e

Furthermore, the descending chain

· · · ⊆ x3N ⊆ x2N ⊆ N ⊂ N

stabilizes for some n ≫ 0 since Hi
m (R) is Artinian. Hence L = xnN . Let y ∈ Hi

m (R). Then
F e (y) ∈ N , and so xp

e−1F e (y) ∈ L for some e ≫ 0. Since x is a regular element xp
e−1F e = 0 for

e≫ 0. By the diagram above

Hi−1
m (R/(x)) /ϕ−1 (L) ↪→ Hi

m (R) /L,
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and so F e = 0 in Hi−1
m (R/(x)) /ϕ−1 (L) for e≫ 0. Hence F is nilpotent on Hi−1

m (R/(x)) /ϕ−1 (L),
and so F e

(
Hi−1

m (R/(x))
)
⊆ ϕ−1 (L) for e ≫ 0. Thus F e

(
Hi−1

m (R/(x))
)
R ⊆ ϕ−1 (L) for e ≫ 0.

Since R/(x) is F -full, F e
(
Hi−1

m (R/(x))
)
= ϕ−1 (L) for e ≫ 0. Therefore, x : Hi

m (R) /L →
Hi

m (R) /L is an isomorphism, which is impossible unless Hi
m (R) = L. Otherwise, for any y ∈

Soc
(
Hi

m (R) /L
)
\ {0}, we have that xy = 0. We conclude Hi

m (R) = N , and so R is F -full.

■

7.3 Deformation of F -injectivity

In this section we prove that given an element x ∈ R, if R/(x) is F -injective, then so is R under certain
conditions. In order to do this we define strictly filter regular sequences and a new singularity called
strongly F -injectivity.

Definition 7.3.1. A regular element x is called a strictly filter regular element if

Coker
(
Hi

m (R)
·x−→ Hi

m (R)
)

has finite length for all i ≥ 0.

Lemma 7.3.2. Suppose K = R/m is perfect. Let M be an R-module with an injective Frobenius action
F . Suppose L ⊆M is an F -stable submodule of finite length. Then the induced Frobenius action on M/L
is injective.

Proof. Let x ∈ L. Then, since L has finite length

F e (mx) = m[pe] = 0

for e ≫ 0. This implies that mx = 0. Hence we have a Frobenius action F on L a K-vector space.
Let L′ = F (L). Note that L′ ⊆ L is a Kp-vector subspace. Since F is injective, dimKp L′ = dimK L.
However, K = Kp, and so L′ = L. This implies that F is surjective, hence bijective. Finally, if x /∈ L,
then F (x) /∈ L. We conclude that F :M/L→M/L is injective. ■

The following example emphasizes the importance of K to be perfect in Lemma 7.3.2.

Example 7.3.3. Let A = Fp [t], and R = K = Fp (t). Consider the A-module Ae1 ⊕ Ae2 with the
Frobenius action

F : Ae1 ⊕Ae2 → Ae1 ⊕Ae2

(f (t) , g (t)) 7→ (f (t)
p
+ tg (t)

p
, 0) .

This action is injective, since

F (f (t) , g (t)) = 0 ⇔ f (t)
p
+ tg (t)

p
= 0

⇔ f (t)
p
= 0 = g (t)

p

⇔ f (t) = 0 = g (t) .
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Moreover Ae1 ⊕ 0 ⊆ Ae1 ⊕Ae2 is F -stable. Hence,

F

(
Ae1 ⊕Ae2
Ae1 ⊕ 0

)
= 0.

Now, localizing at t we get a Frobenius action on the modules M = Ke1 ⊕Ke2 and L = Ke1 ⊕ 0. Note
L ⊆ M is a F -stable of finite length, since mL = 0. However the induced Frobenius action on M/L is
not injective since F -stable. Hence,

F (M/L) = F

(
Ke1 ⊕Ke2
Ke1 ⊕ 0

)
= 0.

Theorem 7.3.4. Suppose K = R/m is perfect. Let x ∈ R be a strictly filter regular element. If R/(x)
is F -injective, then the map xp−1F : Hi

m (R) → Hi
m (R) is injective for every i ≥ 0. In particular, R is

F -injective.

Proof. Let Li = Coker
(
Hi

m (R)
·x−→ Hi

m (R)
)
. Since x is a strictly filter regular element, Li has finite

length for all i ≥ 0. The following commutative diagram

0 R R R/(x) 0

0 R R R/(x) 0

·x

·x

FFxp−1F

induces the commutative diagram

0 Li−1 Hi−1
m (R/(x)) Hi

m (R) Hi
m (R) · · ·

0 Li−1 Hi−1
m (R/(x)) Hi

m (R) Hi
m (R) · · ·

ϕ ·x

ϕ ·x

Fxp−1FFF

Therefore, we have the following commutative diagram

0 Hi−1
m (R/(x)) /Li−1 Hi

m (R) Hi
m (R) · · ·

0 Hi−1
m (R/(x)) /Li−1 Hi

m (R) Hi
m (R) · · ·

α ·x

α ·x

Fxp−1FF

By Lemma 7.3.2, the Frobenius action on Hi−1
m (R/(x)) /Li−1 is injective. Now, we want to show that

xp−1F is injective. Let y ∈ Ker
(
xp−1F

)
∩ Soc

(
Hi

m (R)
)
. Since x is a regular element, x ∈ m, and so

xy = 0. Thus, there exists z ∈ Hi−1
m (R/(x)) /Li−1 such that α (z) = y. Furthermore

(α ◦ F ) (z) = xp−1F (α (z))

= xp−1F (y)

= 0

Since F and α are both injective, we have that z = y = 0. We conclude xp−1F is injective. ■
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Proposition 7.3.5. Suppose K = R/m is perfect. Let x ∈ R be a regular element such that R/(x) is
F -injective. Let s be a positive integer such that Hs−1

m (R/(x)) has finite length. Then the map

xp−1F : Hs+1
m (R/) → Hs+1

m (R/)

is injective.

Proof. Given the short exact sequence

0 R R R/ (x) 0·x

we have the long exact sequence

· · · Hs−1
m (R/ (x)) Hs

m (R) Hs
m (R) Hs

m (R/ (x)) Hs+1
m (R) · · ··x

Since Hs−1
m (R/ (x)) has finite length, then Ker (·x) has finite length too and Supp (Ker (·x)) = {m}. We

want to show that Ls = Coker (·x) has finite length.
Without loss of generality we can assume R is complete. Since Ker (·x) has finite length and Hs

m (R)
∨

is finitely generated as R-module, then the map

Hs
m (R)

∨
Hs

m (R)
∨·x

is surjective when localizing at any prime ideal but m. Then ·x is an isomorphism onHs
m (R)

∨
, asHs

m (R)
∨

is module finite. Therefore the Ker

(
Hs

m (R)
∨

Hs
m (R)

∨·x
)

has finite length. Dualizing we have

that Coker
(
Hs

m (R) Hs
m (R)·x

)
has finite length too. Using the same argument as in Theorem

7.3.4, we get that xp−1F is injective.
■

Corollary 7.3.6. Suppose K = R/m is perfect. Let x ∈ R be a regular element such that R/(x) is F -
injective. Then the map xp−1F : Hi

m (R) → Hi
m (R) is injective for all i ≤ fm (R/(x)) + 1. In particular,

if R/(x) is generalized Cohen-Macaulay, then R is F -injective.

Proof. This follows from Proposition 7.3.5 changing s for i, for i < fm (R/(x)). ■

Definition 7.3.7. We say that R is strongly F -injective is R is F -injective and F -full.

Remark 7.3.8. By Remark 3.2.23 and Remark 3.3.2, we have that F -anti-nilpotent implies strongly
F -injective, which implies F -injective. Furthermore, if R is Cohen-Macaulay and F -injective, then R
strongly F -injective.

Corollary 7.3.9 ([MQ18]). Let x ∈ R be a regular element. If R/(x) is strongly F -injective, then so is
R.

Proof. First, by Theorem 7.2.2, R is F -full and by Corollary 7.1.8 R is F -injective. We conclude R is
strongly F -injective. ■
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